A Factor Graph Framework for Semantic Indexing and Retrieval in Video
نویسندگان
چکیده
This paper proposes a novel framework for semantic indexing and retrieval in digital video. The components of the framework are probabilistic multimedia objects (multijects) and a network of such objects (multinets). The main contribution of this paper is a novel application of a factor graph framework to model the interactions in a network of multijects (multinet) at a semantic level. Factor graphs are statistical graphical models that provide an efficient framework for exact and approximate inference via the sum-product algorithm. Incorporating the statistical interactions between the concepts using factor graphs enhances the detection probability of individual multijects and provides a unified framework for integrating multiple modalities and supports inference of unobservable concepts based on their relation with observable concepts. Our experiments reveal significant performance improvement using the inference on the factor graph models.
منابع مشابه
A Framework of Indexation and Document Video Retrieval based of the Conceptual Graphs
Most of the video indexing and retrieval systems suffer from the lack of a comprehensive video model capturing the image semantic richness, the conveyed signal information and the spatial relations between visual entities. To remedy such shortcomings, we present in this paper a video model integrating visual semantics, spatial and signal haracterizations. It relies on an expressive representati...
متن کاملتأملاتی بر نمایه سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه
Purpose: This paper presents various image indexing techniques and discusses their advantages and limitations. Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...
متن کاملDeep Learning Based Semantic Video Indexing and Retrieval
We share the implementation details and testing results for video retrieval system based exclusively on features extracted by convolutional neural networks. We show that deep learned features might serve as universal signature for semantic content of video useful in many search and retrieval tasks. We further show that graph-based storage structure for video index allows to efficiently retrievi...
متن کاملFactor graph framework for semantic video indexing
Video query by semantic keywords is one of the most challenging research issues in video data management. To go beyond low-level similarity and access video data content by semantics, we need to bridge the gap between the low-level representation and high-level semantics. This is a difficult multimedia understanding problem. We formulate this problem as a probabilistic pattern-recognition probl...
متن کاملA probabilistic framework for semantic video indexing, filtering, and retrieval
Semantic filtering and retrieval of multimedia content is crucial for efficient use of the multimedia data repositories. Video query by semantic keywords is one of the most difficult problems in multimedia data retrieval. The difficulty lies in the mapping between low-level video representation and high-level semantics. We therefore formulate the multimedia content access problem as a multimedi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000